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ABSTRACT

We study the system of equations (1.1), describing the stationary motion
of a compressible viscous fluid in a bounded domain Q of R?. The total
mass of fluid m|f|, inside Q, is fixed (condition (1.2)). We prove that for
small f and g, there exists a unique solution (u,p) of the above gystem
of equations, in a neighborhood/gf (0, m). Moreover, by introducing a
suitable parameter A, we ;;;éythatighe golution of the Navier-Stokes
equations (9.149 are the incompressible limit of the solutions of the
compressible Navier-Stokes equations ff?ﬁsff The proofs given here, apply,

without supplementary difficulties, in the context of Sobolev spaces Hkiﬁ,

and other functional spaces. The results can be extended to the heat

depending case, too.

AMS(MOS) Subject Classifications: 35G30, 35M05, 35Q10, 76D05, 76N10

compregsible fluids, Incompressible limit, Stationary solutions
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SIGNIFICANCE AND EXPLANATION

A ¢ !
In this paper we consider;the non-linear system of partial differential

equations (1v1f1 describing the barotropic stationary motion of a compressible
RN
P
fluid, in a bounded region .Qs/see (4] for details.

e

We“assume that the total mass of fluid inside Q is fixed, and equal to

N ' mlnl, where the mean density m is given, (condition (1.2)).
% —_—

we prové‘thatffor small f and g, there exists a unigque solution u(x),

p(x) of (1:17 in a neighborhood of (0, m). Here, u(x) is the field of
velocities, p(*) the density of the fluid, p(P(x)) the pressure field,
and f(x) th;r;;ternal force field (in the phy;;;;l interesting case one
has g = 0).

Moreover, we-prove thaﬁ the solutions of system 11‘1311 converge to the

solution of the Navier-Stokes egquation €4T4#1f as 5vf ;;Q i.e. when the Mach

number becomes small. R SIS LU M w0
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STATIONARY MOTIONS AND INCOMPRESSIBLE LIMIT FOR COMPRESSIBLE VISCOUS FLUIDS

H. Beirao da Vciga'

1. INTRODUCTION AND MAIN RESULTS

In this paper we study the system
=-ufu = vWaiv u + Tp(p) = plf -~ (u*V)u], in @,

(1.1) div{pu) = g, in Q,

u'r - 0,

in a bounded, open domain in l3, locally situated on one side of its boundary I, a c3

manifold (the case n ¥ 3 can be studied by the same method). As usual,

3
(v ¢« Vo = z v1 %%— .
i=1 i

System (1.1) describes the stationary motion of a barotropic, compressible fluid; see
Serrin [4]. 1In equation (1.1), p(x) is the density of the fluiqd, u(x) the velocity
field, f(x) the assigned external force field, p = p(p) the pressure. In the physical
equation one has g = 0; however, on studying (1.1) from a mathematical point of view, it
is not without interest to study the general case.

We assume that the total mass of fluid inside 0 is fixed, i.e., we impose to the
solution of (1.1) the contraint

(1.2) T%!T fo otx)ax = m,

where the mean density m is a given positive constant. The function p will be written

in the form p = m + 0, and the new unknown o(x) has to verify the constraint

.Dopartn‘nt of Mathematics, University of Trento (Italy).

Sponsored by the United States Army under Contract No. DAAG29-80~C-0041.
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oy - 1
o (1.3) =TT Jq otx)ax = o.
s

We assume that the real function p + p(p) is defined and has a Lipschitz continuous

-\‘
}: first derivative p'(p) in a neighborhood I = (m = £, m + t] of m, for some positive "
-
{: 2 < m/2. We assume also the (unessential) physical condition k = p'(m) > 0. Clearly,
~
: (1.4) p'(p) =p'(m + g) = k -~ wl(o), Voel, .
.. where w(0) is a Lipschitz continuous function, such that w(0) = 0. We set
= S = sup |wto) = wlr)] .
-1
- o,Tel
f} Concerning the constants u and v, we only assume that
}j (1.5) u>o ' v > .
:~ In the sequel, we write the system (1.1) in the equivalent form
- . ~udu - vVdiv u + kVg = w(g) Vo +
=~ + (m + 0) [£ - (ueV)u], in @,
e (1.6)
.. mdivu+use» Vo+gdivu=g, in qQ,
U|r=0-
- Let us introduce some notation. We set
N 3 oy 3 av, ,2
i 2
ol = ]G we Vs T gt
- i1,k=1 Tk i,k=1 “x "1k
. where v is a vector and T a scalar.
2 We denote by w*, integer, the Sobolev space Wk’z(Q), endowed with the usual norm

_ L} ¥ and by 1 < p € +», the usual norm in P = LP(my. Hence, 1 lo = | |2. For

| 1

convenience, we utilize the same symbol Hk to denote also the space of vector fields

v in @ such that vi 4 Wk'z(ﬂ), i =1, 2, 3. This convention applies to all the

functional spaces and norms utilized here.

\-‘..\v_-"
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we define

Y -

2

3

H: = {v e Hk: v=0 on I} .

Moreover,

,.
s

Ny

R e(rent:T=0), B =uni
0 0
where T is the mean value in £ of the scalar field

2

4

t(x). PFinally, for vector fields,
we define

3 3
Ho,d = {v ¢ Hy ¢ divvs=0 on T}.

In the sequel, ¢, Cj, Cq, Cys++., denote positive constants depending at most on Q.

Morsover, c', cj, €}, ..., denote poasitive constants depending at most on

Q, u, v, k, m, £, and S. The same symbol ¢ (or c') will be utilized to denocte
different constants, even in the same equation.

In section 3 we prove the following result:

Theorem A. There exists positive constants c6 and c; such that if
f e Hl, g e ig, and

(1.7)

1 ]
1£1, + g1, < ¢,

then there exists a unique solution

(v,0) € ng x H® of problem (1.6), in the ball

1
Iv.\l3 + |a|2 < ¢y

A crucial tool in order to prove this result will be the study of the linear system

7 aybu - WWaiv u + kVo = F, in @,

mdivu+ve Vo+odivv =g,

\ u'r =0 ,

in Q,

for which we will prove the following result:




Theorem B. let F ¢ a', g€ # :, and Vv ¢ H: a be given, and assume that (2.14)
,

TR €T T

‘-

holds. Then, there exists a unique solution (u,d) ¢ H: a x ﬁz of the linear system
’

(1.9). Moreover,

p+ iv| p+ vl
ututy + kiot, < (1 + =t —=L) i+

(1.10)
+ C%M 191,

,:
:
E

In section 4, we assume that the function p(p,A) depends, in a suitable way, on a
parameter A. By letting )\ + 4=, we prove that the solution of the Navier-Stokes
equation (1.14) is the incompressible limit of the solutions of system (1.73). Por the
justification of the physical aspects of the description (i.e., the behavior of p(p,A),
as )\ + +») we refer, for instance, to reference [1].

We assume that for each value of the parameter A ¢ [g, + = (A; ¢ R, has no special
meaning) the function p(p,\) is defined in a neighborhood 1

z [m=t ‘*‘x] of m,

A A’
where 0 < £, < m/2. Moreover, for each fixed ), the derivative dp(p,2)/d = p'(p,}),
is Lipschitz continuous on I,, with Lipschitz constant 8y

We define kX = p'(m,1), and assume tht kx > kg > 0 (the constant kg has no
special meaning, since we will let kX + 4o, ag ) + +»), We suppose that there exist M

positive constants ¢ and { such that

(1.11) s, <ok , vara, .,
and
(1.12) lxkX > ¥ A xo .

By (eventually) defining a smaller lx, we assume, without losing generality, that
lxkx = f. Finally, let wx(a) be defined by p'(m+g,)) = kx - mx(a)-

Consider the stationary compressible Navier-Stokes equation, with state function
p(O:)‘),

Cak 4
A
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-udu, - v7 div u, + Vp(px,x) - pA[f - (ux-V)uAl ’

(1.13) dlv(oxux) =0 , 4in 0,

o tadyp=0

and the incompressible Navier-Stokes equation

~ubu_ + Vnix) = m(f =~ (u V0 ) ,

(1.14) div u = 0 , in 0,

i (u‘_)'r-o .

As above, we set °A(X) = m + cx(x), and we look for solutions of (1.13) verifying
. assumption (1.2), i.e. such that (1.3) holds.
' We denote by Z, Zo, 31. 32.---, positive constants depending at most on
Q v, v, m, £, & and kg, and we say that a positive constant is of type c if it
depends at most on the above parameters.

- In gection 4, we prove the following result:

. Theorem C. There exists positive constants ¢ an 31 such that the following

0 =

statement holds:

(1) Let £ ¢ H', belong to the ball

. (1.15) lfl1 < cy -
3 —2
Then, for each 1 > xo, problem (1.13) has a unique solution (ux,ox) € H0 x H® in
the ball
’ (1.16) W l, + X 1o 1, <o, .

A3 ATTR2 1

(11) 1¢ lim k, = +=, then
Arte
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; u, *u, , weakly in Hg, strongly in Hg, vs<3 ,

: div u,y + 0, weakly in H% + strongly in Hg, vs8<2,

' (1.17)

{ ox + 0, strongly in iz ’

: Vp(pA,X) + Un , weakly in H1, strongly in H®, v 8 ¢ 1 y

; where (u_,Vs) is the unique solution of problem (1.14).

! The existence of the solution (u_,Vw) of (1.14) is well known. However, it follows

t from our proof, too.

E Note that both problems (1.13), (1.14) are invariant under addition of arbitrary

: constants to p(A,p) and 1w, respectively.

i An existence result for system (1.1) was given first by Padula, in reference [3].

. Unfortunately, the (quite simple) pcoof given there depends in a crucial way on a

; smallness condition on |y respect to v ( u and v positive constants). This

i condition was dropped in Valli's paper (5], where a result similar to Theorem A is proved,

B by approximating the stationary solutions with the periodic solutions of the corresponding
evolution problem. This technique was applied in {6] to the heat-depending case, and to

i more general boundary conditions.

! The proofs given in our paper are quite simple, and apply as well (without any

3 supplementary difficulty) in the context of other spaces of functions, as for instance

i Sobolev spaces Hk'p, 1< p < 4o,

Y

I In particular, for small data (f,q) € Y & §§+2, there exists a unique solution

- (u,0) € Hg+3 x §k+2, in a neighborhood of the origin, for every k » 0 (we assume the

: derivative p(k+1) Lipschitz continuous, and Q of class Ck+3).

; Furthermore, all the results hold again in any dimension of space (on dealing with

I the non-linear problem in space Hk'p, k must be sufficiently large).

. Statements and proofs, in the above general setting up, will be given in a

L forthcoming paper, where (for completeness) we will consider the heat-conductive-case. In
this paper, we state only the counterparts of theorems A and B, in appendix 2. The proofs

!

. -6-
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can be easily done, by following those of theorems A and B. Here, we have preferred
considering the main case (1.1) by itself, in order to avoid secondary technicalities. 1In
fact, in the heat-depending case a third equation should be added to system (1.1) (see
(6.1})). However, that equation is weakly coupled with its companion equations, in system
(6.1). As a matter of fact, the more interesting mathematical problems and the main
difficulties, already appear on studying system (1.1).

Finally, it goes by itself that quite obvious assumptions and devices, allow the
coefficients yu, v X, Cyr ¥ and Y' on dependingon u, p and 8.

2. Proof of Theorem B

We start by proving the uniqueness of the solution of the linear system (1.9), under
the assumption (2.1) below. Let (u,c) be a solution, with data F = 0, g = 0. By
multiplying both sides of equation (1.9), by mu and of equation (1.9)2 by ko, by

integrating over 91 and by adding side by side the two equations, one easily shows that

2 _k 2
myy WVuly < 5 jaiv vl toly
where yo = min{y, u + v}.

Hence,
2 k 2
i <c g [aiv v|_ o1 .

Moreover, from (1.9)1 it follows that

kloly < ckiVol_; < cly + v ur,

since o = 0. Consequently,
)2

+ |y
c(u

2
muok ldiv v]’ Iul'.

Iul? <

This proves that the uniqueness holds whenever

muok

(2.1) v, < 3
cofu + v

--
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for a suitable positive constant cqys recall that H C L.
In the remaining of this section we prove the existence of the solution of system
(1.9). We assume that Vv ¢ ﬂ: a verifiea the condition

(2.2) laiv v|_ + 2|9v|_ ¢ mk/(p + ),

1 - -
and that F ¢ H, g ¢ Hg . let T € “2 , and consider the linear problem

mk
(2.3) w v A+ veVA=G,
where
m
G = Ag + N div F
(2.4)

- [2Vv : V21 + Av ¢ VT + A (1 div v)] .

The significance of equation (2.3) is strongly related to the identity (2.20). It is
well known (Lax-Phillips [2]) that there exists a linear map G + ), from all of L2
2
into Lz, such that for each G ¢ L the corresponding A is a weak solution of (2.3),

and verifies the estimate

[ PN
=
+|F
<
o
=

(2.5) M, < IGH, .

By a weak solution of (2.3), we mean here a function X ¢ Lz such that

=

(2.6) T+ 'a

Apdx - fg A div(ev)dx = fn Godx, ¥o € H' .
For the reader's convenience, teéccjrc.i>emplete proof of this result in the Appendix

1 4 2
By using the embeddings H C L and H C L@, one verifies that IGIO is bounded

by the right hand side of equation (2.7) below. Hence our solution A of (2.3) verifies

-8~
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' (2.7 DK yA1, € c(IFE, + g1, + avi, ITH)) .
: u+v 0 1 2 3 2
14 2
let now 9 ¢ H0 be the solution of the Dirichlet problem
- (uw+ v) A8 = ki - div F, in @
3 (2.8)
K elr =0 ,
.
By using (2.7), one has
TR’
(2.9) (uy + v) nel2 < c o (n.-*u1 + |gn2 + |vl3 nuz) + chu1.
Define now
(2.10) 8,(x) = 8(x) - B .
- ) . 3 =2
Clearly, eo = 0. Let (u, 0) be the unique solution in the class Ho x H" of the
following linear Stokes problem, in Q :
= ~yhu + kVg = F + vveo,
= (2.11) div u = eo,
Yr
From the L2 estimates for this problem one has
(2.12) wluly + khob, < c(NFN, + Ivl N8N, + ulB k) .
B By taking in account that neol2 < nenz, one gets
srur. + kot < of1 + mr vl pwe Doy p oy
3 2 N b+ v m : 1 oo
(2.13) S
y + v] R
+ <, o (ﬂgl2 + lvﬂ3 + nrnz) . :'i‘,"
.:. _9_
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let now c, be a positive constant such that

3

|aiv w], + 2|w]|_ < cyivl,, VW eHy .

In the remaining of this section we assume that the vector field v verifies the
condition
(2.14) fvi, < vk ,
where, by definition,

Uon

co(u*|v|)2

m m }
" 2 (uriv]) c, (utv)’

(2.14") Y = min|

Assumption (2.14), implies, in particular, (2.1) and (2.2).

From (2.13) and (2.14), one gets

1
ulul3 + klcl2 < ) kl‘rl2 +

p+ vl L+ |y u_+_[v]
+c(1 + v * = )Rl + ¢ — 1g1

(2.15)

2

At this point, we call attention to the sequence of linear maps, introduced above:

(F, g, 1) » (F, X) » (F, 8) + (F, 8,) + (u, o) ,
which were defined by equations (2.3) + (2.4), (2.8), (2.9), (2,11), respectively. The
product map (F, g, 1) + (u, 0) is linear and continuous, by (2.15). Hence, {if
(u1, 01) is the solution corresponding to data (F, g, 1), it follows that
(u - Uy 0 - 01) is the solution corresponding to data (0, 0, 1t - 11) « Consequently,
(2.15) yields, in particular,
g - 01H2 < % Mt - T1I2 .

Hence, for fixed F and g, the map T *+ ¢ is a contraction in H 2 . Consequently,
it has a (unique) fixed point o = 71 .

In the sequel we prove that the pair (u, ¢), corresponding to the fixed point
o = 1, solves equation (1.9). Equations (1.9), and (1.9); follows from (2.11). In order

to prove (1.9),, we start by substituting the expression of A, obtained from equation

(2.8)1, in the first term on the left hand side of (2.3). This yields, since t =0 ,

-
r‘l [
4

. v oo -
.,
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v vy
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mAB + v o VX + 2Vv ; Vza + Av ¢ Vo + A(g Aiv v) =

3 .

b

(2.16)
= Ag .
e
On the other hand, by applying the divergence operator to both sides of equation ;::i&
(2.11), and by utilizing (2.11), one gets -(u + V)80 + kAo = div P, since A9, = A0. By ::ﬁijt
el
comparison with (2.8),, one shows that ) = Ac. By replacing A\ by Ac in equation L —

(2.16), it follows that

mA div u + v *» VAo + 2% Vzo + Av » Vo +
(2.17)
+ Alg divv) ~g=0,
or equivalently,
{(2.18) Almdivu +veVo+odlvv=-g) =0, in Q.
The function between square brackets (which belongs to H‘) is equal to the constant

-m8 on the boundary, by (2.8),, (2.10), (2.11),, and by the assumptions v = 0,
divv=g=0 on I . Consequently,

mdivu+v e Vo+odivv-gm= -n§, in Q .

By integrating both sides of this aquation in , one shows that it must be 6 = 0 .

Hence, equation (1.9), is satisfied. Finally, the estimate (1.10) follows from (2.15).

a]
Remark. One has to be careful on deducing (2.18) from (2.17), since both equations hold

only in a weak sense. The point is to prove the identity

-fn V(v ¢ Vg) ¢ Vgdx = -fn 40 div(ev)dx +

(2.19)

+In[2w:v2a+Av-Vo1 .dx,v.ec;,
which is a weak formulation of

(2,20) Alv ¢ Vo) = v o VAp + 2Vv vza + Av ¢ Vo .

-11-
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fr FPor g € H3, this last identity holds, and yields (2.19). If o0 ¢ Hz, we approximate
o it (in the n2 norm) by a sequence of functions o, € Bs, and we pass to the limit in
-
equation (2.19) (written with ¢ replaced by on) as n+ + e,
‘2 3. Proof of Theorem A :
\ For convenience, in this section we will not take case on the explicit dependence of
\
i the positive constants respect to the parameters. However, all the constants depend at '
&8 most on @, y, v, k, m, £ and S.
- =2
. Let c4 be a constant such that |1|~ < cy Itl,, for every T e H . We will
~
o utilize here the condition
. L
(3.1) ltl2 < i
3
- which guarantees that m + 0(x) belongs to the domain of p, for every x ¢ I, since
?: -2 < 1(x) < L.
- Let v € ug verify (2.14), and 1T € A° verify (3.1), define
. (3.2) Flv, 1) = (m + T)(f = (v « V)v] = w(T)VT,
:} and consider the linearized system (1.9) with F(x) given by F(v, 1), i.e., the system
. ( -pAu - V¥ div u + kVo = PF(v, 1), in Q,
: (3.3) mAivu + (v V)o+odivv=gqg, in Q,
A ulr =0 .
since H' c 1%, W2 CL” and [wtny ] < st < (2/c;) S ITl,, one easily shows that
- 3 2 2 2
- (3.4) IF(v, T)I1 < C(Em + c3) (lfl1+ Ivlz) + cSI‘l’I2 .
. This last estimate, together with (1.10), yields the following result:
Theorem 3.1. let Vv € Hg a’ T € ﬁz and let (2.1), (2.14) and (3.1) be satisfied.
’
Then, the unique gsolution u, o ¢ Hg x ﬁz of system (3.3), verifies the estimate
. 2
. (3.5) Iul3 + Ial2 < a(l'rl2 + lvlz) + b(lfl1 + lglz) .
e ) . \_.\'
: -12- v_'\. ::‘
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where the positive constants a and b depend only on #, u, v, k, m, t and S.

|

1

The existence and uniqueness of the solution (u, o) of system (3.3), enables us to =

define the corresponding map (u, o) = T(v,t). The fixed points of the map T are just

s,

the solutions of the non-linear system (1.6). In order to prove the existence of these

.
"’.
t

.
)
-,

o

fixed points we assume that

1 ) £ X
(3.6) 1£1, + g1, < 5= min{3, vk, ) S
3 ,\,ﬁr
and that {:¢~¢7
. .8 ) P
(3.7) tviy + 111, < minf3Z, vk, ) RSt
3 N S

The parameter & ¢ )]0, 1), will be fixed later on. Consider the ball -

. 3 =2 p

By = {(v, 1) e Hy g * B (3.7) holds} . R

1 2
This is a compact set in Ho x L”. Moreover, by using (3.5), one shows that

TBG C 36' for every & < 1 . We want to prove that, for a sufficiently small
8, depending only on &, u, v, k, m, £ and 8, the map T is a contraction in BG'
Hence T has a (unique) fixed point in BG' and Theorem A is proved.
Let (u, 0) = T(v, 1), (u1, g4) = T(v,, 11) + F=F(v, 1), Fy = F(v1, r‘) « One has,

in Q,

-y Au - u,) = vV div(u - u1) +kV(o - 0,) =F - F,,

(3.8) m div(u - u,) +voe Yo - a,) + (v - v1) s Vo, +

+ 0, div(v = v1) + (0 - 01) divv=20.

By multiplying both sides of equation (3.8)1 by m(u - u,) and both sides of
equation (3.8)2 by k(o - 01), by integrating in ), and by adding side by side the two

equations obtained in that way, one shows that

-13-
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2 1 2
m(u = [v]) Ve - u )iy < S k|div v] 10 - o0+
(3.9)

+ ckla,l2 v - vy, o - g,k + miF - F.1_, Ia - u1l1.

In proving (3.9), we utilized the Sobolev's immersion theorems H2 C;Lf and
1 4 . R : 2 2
H' GL", and also the inequality Idiv(u - u )i, < 19(u - “1)|0’

From (3.9) one has

2 R 2
u = u by < c'laiv v| 1o - o 1+
(3.10)
2

+c'lol, v = v, lo=-o0l,+ c'IF - F I_

2 11 10 17 -1"

On the other hand 16 - g,0, < clV(g - 0,)0_, , since 0 = 0, has meaa value zero.
Hence, by using the expression of V(o = 01) obtained from equation (3.8)1, (or L2

estimates for the linear Stokes problem) we show that

_ 2 ' R 2 ' - 2
(3.11) 1o 01I0 < czlu u1l1 + c'IF F1I_1 .

By multiplying both sides of equation (3.11) by 1/(2c5), by adding (side by side)

this equation to equation (3.10), and by using standard devices, we prove that

1 2 2
- - + c'(1 - ¢! i - <
) fu u1l1 c3( cy |div vlw) LI CALH
(3.12)
' 2 - 2 T . 2
<c lc1l2 v v1l1 + c'IF F,ll_1 ’

for some suitable positive constants ci, ca, and c' .
On the other hand

IF-F 01 <AEN_ Mt - 1.0 +c(1+l1l2) (vl

+ v - +
141 1 10 v iy vyl

1 171

(3.13)

+ c[lv1l2

5t sty + (R PORIN LI

'l’1lo .

1 4 .
In fact, by using the immersion H GUL, one easily shows that

BT = T )0 o < MEN, T - T -

-14-
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similarly,
v e Vv = (vy ¢ DIVl o Cclivl, + IV 0,) Iv = vy o
and
1t(v ¢ V)y = 1'1(v1 . V)v‘l_1 < cltl2 (v o V)v - (v1 . V)v1l_1 +
2
+ clv1l2 it - 11'0 .
Furthermore, T(x)
(1) 91 - wlt,) Vv 0 _ =49 [ w(E)AEl_, <
7.{x)
1
(x)
< ¥ w(g)aky < sltl + |t ) 1t =c, .
Tt(x’

The above inequalities yield (3.13).

. 1
For A < a/c.c}, one has caldzv v|_ < cjc, Iviy < 3, by (3.7). Hence, from (3.12),

{(3.13) one gets

_ 2 - 2 ' 2 - 2
fu u,l’ + lo a,.lo <c Ifl1 It ‘1'0 +

2 2 2 2
. -
(3.14) tetfa ) vy v s a0 al] v - vl e
2 2 2
+ cfiv 1y + stirn, + 1 )] v - rag .

By choosing § sufficiently small, depending only on Q, u, v, k, m, L and S, one
has

lu -u I2 + g -0 l2

1 2 2
M Jo <z - vl e - 1ag) .

i1 1

Hence T is a contraction in 56' which proves Theorem A.
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Remark. B, is a compact and convex subset of H; x Lz. T : B, + B, 4is continuous A

1 1
respect to that topology, and TB1 (o B, . Hence, we can prove the existence of (at least)

a fixed point in B, by using Shauder's theorem. The uniqueness follows by using (3.14)

(actually, it is quite trivial to obtain more stringent uniqueness results.).

4. Proof of Theorem C. During the proof of part (i) of theorem C, By Oyo kx, e will
be denoted by u, 0, k, w respectively. Theorem B states that if F ¢ H‘. g=0, and if

v e ag,d verifies the condition

(4.1) lvl3 <Yk ,

then there exists a unique solution (u,0) ¢ “3,6 x ia of the linear system (1.9).
Moreover,

(4.2) uiuly + ktob, < c(1 + %L%L + -!ﬂ_-‘i) 3.3 PR

Let us now fix T € ﬁa in the ball

L
(4.3) ltl2 < ;l , or equivalently, Ikr)

3 2 3

where c3 was defined in section 3, and ¢ is the poeitive constant defined in (1.12).

‘L-
c

Condition (4.3) guarantees that It(x)l < L, VxeQl. In particular n/2 < m+ 1ix) €
(3m)/2.

By defining F(v,T) as in (3.2) (recall that, now, uw = ”A) one has, as in section

3,
iriv, 01, <c(3m +L*-)(|ﬂ + |v|2) + es 1mi?
verily 2 <, 1 2/ T ety -
Hence,
3 |3 2 2 2
(4.4) IP(v, 1)1, Sc(Fm+ °3k0)(lfl' LA PR AT S L1 PO

(recall k = k,). If v and 1 verify assumptions (4.1) and (4.3), it follows from (4.2)
and (4.4) that the unique solution (u,0) of syatem (3.3) verifies the estimate

2
(4.5) fut, + Ikol, < l(lk'rl2 + Ivlz) + blfl, .

where now a and b are constants of type © (the above result corresponds to theorem

-16~
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3.1, in section 13).

The proof goes on as in section 3, by utiliring now ko and Xkt instead of ¢ and
1, respectively (in this way, inequalities (3.5) and (3.1) becomes (4.5) and (4.3),,
respectively; condition (4.1) remains unchanged).

Following section 3, we denote by T the map (u,0) = T(v,T), where the data
a (v,1) € “g,d x EQ verify (4.1), (4.3), and (u,0) is the (corresponding) solution of
- system (J.3).

We fix f ¢ ' verifying (3.6) (here, g = 0), and we consider the restriction of

T to the ball B;, 0 < & g 1, defined by the condition

8 L
(4.6) iy 4+ kT, € nin{i:, Yk, E;} .

The substitution of T by kT transforms (3.7) on (4.6). Arguing as in section 3,

and recalling that k > kg, we prove inequalities (3.10), (3.1%) and (3.12), if in these
inequalities we replace o, 9qs To Ty by ko, ko, kT, kr4 respectively. The constants
c', ¢j, ¢}, cg are now of type €, hence independent of k.

Inequality (3.13) holds, as written in section 3. Recalling that 5§, < okz, and
that k > kg, we show that {3.13) holds again, if 1, Ty, and § are replaced by kt,
kt,, and ¢, respectively, and if the right hand side of the inequality is multiplied by
1+ (Vkq)-

By choosing § as in section 3, i.e. § ¢ a/(c,ca), we get an inequality similar to

(3.14), where now 1, 0, T, and 0, are multiplied by Xk, and the constants are of type

c. By choosing § sufficiently small (depending only om &, u, v, m, &, ¢, k) one gets

- (4.7) tu-u 8% + 1xo-ko 12 # ek idy

1 2
1%y 1'p € 7 vy

11

Hence T is a contraction in By, which proves the first part of theorem C.

We now prove part (ii) of that theorem. Condition (1.15) guarantees the uniqueness
of the solution of problem (1.17), for a sufficiently small ;6.

Let us write system (1.13) in the form (1.6), i.e.

-17-
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-"A“x - v div u, + kAVux = mx(ox)Vax + (m+cx) [t - (“A'V)“A] .

m div u, +u, ¢ Vo

(4.8) A + 9, divu, =0, in R,

A A A .\

(“X’Ir =0 .

From (1,16), it follows that there exists u_, ¢ Hg, such that (1.17)4 holds (here,
we consider subsequences of u,; the convergence of all the u; to wu,, as A+ 4,
will follow from the uniqueness of the limit u,, since we will show that v, is the
solution of (1.14)).

The bound (1.16), and the hypothesis k, + += as X » +=, imply (1.17),.

DR e

Furthermore, equation (4.8)2, together with (1.16) and (1.17)3, shows that div u, + 0,

(2

Y

strongly in H), as A » +e. Since Idiv u,f, is bounded, (1.17), follows. In

particular, div u, = 0.

Now, we pass to the limit in eguation (1.13),, as A + +»., One has uAuA * uhu and
-vV div u, * 0, weakly in H' ana strongly in H®, 0 < 8 ¢ 1; and Py * m, strongly
in u2. Moreover, p)‘(u)‘°V)uA + m(u’-V)uﬂ, weakly in H2 and strongly in K%, 0 ¢ 8 < 2.
By using equation (1.13),, it follows that Vp(pA,X) > ubu_ + n(f - (u.~V)u-], weakly
in H1, strongly in K%, 0 < s < 1. Obviously, the limit function must be of the form

Un{x). Theorem C is completely proved.

-18-
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APPENDIX I

For the readers convenience we prove here the result stated at the beginning of
section 2, concerning equation (2.3). We assume that the function v ¢ n3' verifies
vens=0 on T, and assumption (2.2). This last condition could be replaced by

1 1
ildiv v+ %] <M. Let G ¢ Hy, ana A Dbe the solution of

Y RUE R R R S L

-€ Axe + HAt + v vxe =G, in @,
(5.1)

k Xelr =0,
l where € 1is a positive constant. By multiplying both sides of (5.1) by Ake, and by
- integrating over f{l, one easily shows that
‘ enr 12 + M- (Haiv v]_+ [w| ] wa ¢
K e 0 2 L] L] €0
I' < lVGlo IVXEI0 .

This estimate, together with (2.2), gives

. (5.2) WAL, < (2/m) %GR,
. and also
(5.3) CHAA 1 < YIE/H AYGH ) .

1 1
Hence, there exists a subsequence Ae such that Ac + A€ Ho, weakly in Ho and

strongly in Lz, moreover, € Ake + 0 in Lz. By passing to the limit in (5.1), as

€ + 0, one proves that ) is a strong solution of (2.3). 1In particular, 1\ verifies

ié (2.6). By multiplying both sides of (2.3) by A, and by integrating over I, one shows
- that
v 1

(5.4) (M -Eldiv vi) M1, € 1GH, .

This gives, in particular, the uniqueness of the solution 1, in u'.

-19-
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1 1
Since the linear map T : Ho + Ho, defined by TG = XA, is continuous respect to the
norm, there exists a unique linear continuous map T extending T to all of I.2 .

L2

Clearly, (5.4) holds again. Purthermore, ) = ;G is a solution of (2.6).
Remark. The result holds again without assuming that v « n = 0 on T, and with
condition (2.2) replaced by the weaker condition Idiv vl_ <M (or, more generally, by
| laiv vl. < 2M) . In that case, equation (2.6) holds for every text function ¢ € H; . ’
(We start by proving the existence of a solution 1A for data belonging to the linear
space H generated by an arbitrarily fixed basis {Gl), £t =1, 2,..., on L2, then, ve

extend the map G + A to all of Lz, by continuity.)
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APPENDIX II

6. The heat-depending-case.

In the heat-depending-case the equations are

-udu - V7 div u + Yp(p,0) = p(f = (ueViu] ,
div(pu) = q ,

(6.1) -x48 + cvpu-ve + epe(p,e)div u=ph + Y(u,u), in 0o,

u“.-o, Olr'n ’

where
du du, 2
(6.2) vew 22§ G ed) +ravw?
s X Ix,
i, J 1 J

Only for convenience, we will assume that u > 0, y+v >0, y >0, Cyr A» A‘, and n > 0,
are constants. As for system (1.1), we impose here the additional condition (1.2).

The function p(p,8) is defined, and has Lipschitz continuous first derivatives, in
an t-neighborhood (m=-f,m+2] x [n=f,n+t] of (m,n). By setting k = pp(m,n),
Y = pg(m,n), one has pp(m+a,n+u) =k - m1(o,u), pe(u+o,n+a) =y - mz(o,u), where w;,
i = 1,2, are Lipschitz continuous (with norms < S) in the t-neighborhood of (0,0);
moreover mi(o,O) = 0. We assume the physical condition k > O.

By setting

p=mty, 6 = nda

the system (6.1) becomes
’

~uAu = V¥ div u + kVog + yVYa = p(f = (ueViu) + u‘(o,a)Vo + wz(a,a)Va ’

mdivu + uVg + g divusmsg ,

(6.3) ﬂ -xAax + yn div u = ph -~ cv(u+a)u-Vu + y{u,u) = ya div u +

+ wz(c,u)(a*n)div u , in Qo ,

Lulr-O, alr-O F)

the additional constraint is given by (1.3).

The linearized system is now

-2l=
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-pldy ~ vV div u + kYo + YVa = F ,
m divu+ veVo + 0 divv=g ,
6.4

( ) -xAa + yn divu =H, in Q ,

ulr = 0, ulr =0 .

In the sequel, c', °6' ca, B, denote positive constants, depending at most on fI, on [

U, vV, Y m, X, n, XA, A*, 2 and S. The dependence of the constants c' on the above

parameters can be easily checked.

One has the following result:

l Theorem A'. There exist positive constants c(') and c§ such that if f ¢ H‘,
-i g € Eg, h € Lz, and

' L]

. (6.5) VEN, 4 gl + Il <oy

=2 2
then there exists a unique solution (u,0,a) € Hg x HW x Ho of problem (6.1), in the ball

(6.6) fud, + lgh_ + fal, < c; .

3 2 2

The proof relies on the following result, for the linearized system (6.4):

Theorem B'. let F ¢ H1, g € ﬁﬁ, H e L2, and v ¢ Hg,d' There exists a positive

constant 8, such that if

(6.7) Ivl3 <8 ,
. . . 3 =2 2 :
then there exists a unique solution (u,0,a) ¢ Hy x R™ x Ho of the linear system (6.4).
Moreover,
' + .
(6.8) fur, + wu2 + lak, ¢ ¢ (OFN, + gk, muo)
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